Robust Estimation for Generalized Additive Models
نویسندگان
چکیده
منابع مشابه
Estimation and Variable Selection for Generalized Additive Partial Linear Models.
We study generalized additive partial linear models, proposing the use of polynomial spline smoothing for estimation of nonparametric functions, and deriving quasi-likelihood based estimators for the linear parameters. We establish asymptotic normality for the estimators of the parametric components. The procedure avoids solving large systems of equations as in kernel-based procedures and thus ...
متن کاملRobust estimation of mean and dispersion functions in extended generalized additive models.
Generalized linear models are a widely used method to obtain parametric estimates for the mean function. They have been further extended to allow the relationship between the mean function and the covariates to be more flexible via generalized additive models. However, the fixed variance structure can in many cases be too restrictive. The extended quasilikelihood (EQL) framework allows for esti...
متن کاملEstimation of propensity scores using generalized additive models.
Propensity score matching is often used in observational studies to create treatment and control groups with similar distributions of observed covariates. Typically, propensity scores are estimated using logistic regressions that assume linearity between the logistic link and the predictors. We evaluate the use of generalized additive models (GAMs) for estimating propensity scores. We compare l...
متن کاملModel-assisted Estimation of Forest Resources with Generalized Additive Models
Multi-phase surveys are often conducted in forest inventory, with the goal of estimating forested area and tree characteristics over large regions. This article describes how design-based estimation of such quantities, based on information gathered during ground visits of sampled plots, can be made more precise by incorporating auxiliary information available from remote sensing. The relationsh...
متن کاملFunctional Generalized Additive Models.
We introduce the functional generalized additive model (FGAM), a novel regression model for association studies between a scalar response and a functional predictor. We model the link-transformed mean response as the integral with respect to t of F{X(t), t} where F(·,·) is an unknown regression function and X(t) is a functional covariate. Rather than having an additive model in a finite number ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Graphical Statistics
سال: 2014
ISSN: 1061-8600,1537-2715
DOI: 10.1080/10618600.2012.756816